Relativistic Heavy Ion Collider Operations and Performance Evolution

RHIC overview

Luminosity and polarization evolution

Performance limitations

RHIC II luminosity upgrade

RHIC – a High Luminosity (Polarized) Hadron Collider

RHIC Design and Achieved Parameters

Mode	No of bunches	Ions/bunch [10 ⁹]	β* [m]	Beam pol.	L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{peak} [cm ⁻² s ⁻¹]
Design values (1999)							
Au – Au	56	1.0	2		2×10^{26}	8×10^{30}	31×10^{30}
$\mathbf{p} - \mathbf{p}$	56	100	2		4×10^{30}	4×10^{30}	5×10 ³⁰
Achieved values							
Au – Au	103	1.1	0.8		12×10^{26}	46×10^{30}	120×10^{30}
d – Au	55	120/0.7	2		2×10 ²⁸	8×10^{30}	28×10^{30}
Cu – Cu	37	4.5	0.9		80×10^{26}	32×10^{30}	79×10^{30}
$\mathbf{p} \uparrow - \mathbf{p} \uparrow$	111	130	1	65%	20×10^{30}	20×10^{30}	35×10^{30}
Enhance design values (2009)							
Au – Au	111	1.1	0.9		8×10 ²⁶	31×10^{30}	155×10^{30}
$\mathbf{p} \uparrow - \mathbf{p} \uparrow$	111	200	0.9	70%	60×10^{30}	60×10^{30}	90×10^{30}

BROOKHAVEN NATIONAL LABORATORY <u>Nucleon-pair luminosity</u>: luminosity calculated with nucleons of nuclei treated independently; allows comparison of luminosities of different species; appropriate quantity for comparison runs.

Delivered Luminosity and Polarization

Luminosity Limit: Dynamic Pressure Rise

Dynamic pressure rise caused by electron clouds Upgraded warm and cold vacuum system:

- installed 430m of NEG-coated pipes (~700m warm sections)
- reduced pressure in cold section to 10⁻⁷ Torr before cool-down

Dynamic pressure currently not a concern during operation

Luminosity Limit – Intra-Beam Scattering (IBS)

- Debunching requires continuous gap cleaning
- Luminosity lifetime requires frequent refills
- Ultimately need cooling at full energy

Luminosity Limit – Fast Instability Near Transition

Intensity

- > Fast transverse instability (~ GHz)
- > High sensitivity around transition
- > Effect of broadband impedance and electron clouds
- > Cures: beam-beam tune spread, octupoles, adjust crossing of zero-chromaticity, suppress electron clouds, chromaticity jump

Intensity

Tomographic reconstruction of 2D bunch density

Low energy Au-Au operation (1)

Demonstrated Au-Au collisions at $\sqrt{s} = 9.2$ GeV/nucleon (T. Satogata et al.) Luminosity not yet analyzed quantitatively.

Low energy Au-Au operation (2)

Event seen by the STAR detector.

- Low energy operation in principle possible. (1/2 normal injection energy)
- rightharpoologie e-cooling in AGS for luminosity increase at even lower energies (down to 1/4 or normal injection).

RHIC - First Polarized Hadron Collider

Without Siberian snakes: $v_{sp} = G\gamma = 1.79 \text{ E/m} \rightarrow \sim 1000 \text{ depolarizing resonances}$ With Siberian snakes (local 180° spin rotators): $v_{sp} = \frac{1}{2} \rightarrow \text{no first order resonances}$ Two partial Siberian snakes (11° and 27° spin rotators) in AGS

Siberian Snakes

AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT) and 3 T (SC), 2.6 m RHIC Siberian Snakes: 4 SC helical dipoles, 4 T, each 2.4 m long and full 360° twist

AGS Polarization

- ➤ Dual Partial Snake in AGS avoided depolarization from all vertical depolarizing resonances and largely eliminated intensity dependence
- ➤ Tests during Run 7: eliminated ~ 5% depolarization from horizontal depolarizing resonances and identified ~10% polarization loss at low energy that depends on partial snake strength
- ➤ Plan to study low energy polarization loss and also increase acceleration rate at low energy → goal to reach 70% polarization at AGS extraction energy.

Luminosity and Polarization Lifetimes in RHIC at 100 GeV

Enhanced RHIC luminosity (by 2009)

Machine goals for next two years with upgrades in progress:

- Enhanced RHIC luminosity (112 bunches, β * = 1m):
- Au Au: 8×10^{26} cm⁻² s⁻¹ (100 GeV/nucleon)

Exceeded by 50%!

- For protons also 2×10^{11} protons/bunch (no IBS):
- $p\uparrow p\uparrow$: 60 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (100 GeV) 150 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (250 GeV) (luminosity averaged over store delivered to each of 2 IRs)

 $3 \times \text{achieved}$

- Exceeded Au luminosity goal
- pp luminosity improvements:
 - Correct non-linear chromaticity → reduced tune spread
 - Near integer working point → accommodate larger beam-beam tune spread
- Achieved 45% polarization at 250 GeV in first try!
 - Correct tunes and orbits at first strong intrinsic resonance to reach full polarization

Major Upgrades

➤ EBIS (low maintenance linac-based pre-injector; all species incl. U and polarized ³He)

ightharpoonup RHIC II luminosity upgrade (~ x 10 [~ 70 × 10²⁶ cm⁻² s⁻¹], feasibility established, ongoing R&D to reduce cost)

Electron Beam Ion Source (EBIS, ≥ 2010)

- New high brightness, high charge-state pulsed ion source, ideal as source for RHIC
- Produces beams of all ion species including noble gas ions, uranium (RHIC) and polarized He³ (eRHIC)
- Achieved 1.7×10^9 Au³³⁺ in 20 µs pulse with 8 A electron beam (60% neutralization)
- Construction schedule: FY2006 10

RHIC II Luminosity Upgrade - Electron Cooling (≥ 2013)

Objectives

- > Eliminate beam blow-up from intrabeam scattering at 100 GeV
- ➤ Increase RHIC luminosity: For Au-Au at 100 GeV/A by ~10
- Cool polarized p at low energy
- > Reduce background due to beam loss
- > Allow smaller vertex

Challenges

- > Cooling rate reduced in proportion to γ^2 or slower. (10⁴ for $\gamma = 100$)
- ➤ Energy of electrons 54 MeV, well above DC accelerators, requires bunched electrons.
- Need exceptionally high electron beam brightness (high bunch charge with low emittance)

RHIC II – electron cooling

Use non-magnetized cooling (no solenoidal field)

(demonstrated with 8.9 GeV antiprotons in Fermilab Recycler – Nagaitsev et al.)

For 100 GeV/nucleon Au beams need:

- 54 MeV electron beam; 5nC per bunch; rms emittance < 4 μ m; rms $\Delta p/p < 5 \times 10^{-4}$
- 100 m cooling section

Electron cooling section in IR2

R&D issues:

- ➤ Benchmarking of IBS and cooling simulation codes (non-magnetized e-cooler at FNAL) ✓
- ➤ Development of 5 10 nC, 703.8 MHz CW SCRF electron gun (10 MHz rep. rate)
- ➤ Development of 703.8 MHz CW superconducting cavity for high intensity beams
- ➤ Construction of Test Energy Recovering Linac (ERL) at high electron beam current

Electron Cooling Simulations

E-cooling system under development allows:

- > Cooling of all species at high bunch intensities
- > Cooling down to transition energy
- > Pre-cooling of protons at lower energies (30 GeV)
- Limited cooling of protons at 100 GeV

Luminosity leveling through continuously adjusted cooling

Store length limited to 4 hours

Four IRs with two at high

RHIC II Luminosities with Electron Cooling

Gold collisions (100 GeV/n x 100 GeV/n):	w/o e-cooling enh. design (achieved)	with e-cooling
Emittance (95%) πμm	$15 \rightarrow 40$	$15 \rightarrow 12$
Beta function at IR [m]	1.0 (0.8)	0.5
Number of bunches	111 (103)	111
Bunch population [10 ⁹]	1.0 (1.1)	$1.0 \rightarrow 0.5$
Beam-beam parameter per IR	0.0018	0.0018
Ave. store luminosity [10 ²⁶ cm ⁻² s ⁻¹]	8 (12)	70
Pol. Proton Collision (250 GeV x 250 GeV):		
Emittance (95%) πμm	20	12
Beta function at IR [m]	1.0	0.5
Number of bunches	111	111
Bunch population [10 ¹¹]	2	2
Beam-beam parameter per IR	0.007	0.012
Ave. store luminosity [10 ³² cm ⁻² s ⁻¹]	1.5	4.0

Stochastic Cooling at RHIC

- Longitudinal bunched beam stochastic cooling demonstrated at 100 GeV/n in RHIC counteracting longitudinal IBS.
- Longitudinal stochastic cooling in Blue ring under construction
- > Transverse stochastic cooling in RHIC at 100 GeV/n might be possible using the same approach.
- > Requires 4 planes of transverse stochastic cooling and new (56MHz?) rf system

Additional Luminosity Improvements for pp Operation

- Polarized proton luminosity is limited by beam-beam tune spread
 - Use low energy electron beam to compensate head-on beam-beam interaction (x2 luminosity?)
- Polarized proton luminosity is not limited by burn-off \rightarrow reduction in β^* useful

 Additional quadrupoles close to IP could reduce beta* to ~ 30 cm (x2 luminosity?)

Summary

Since 2000 RHIC has collided, at many different collision energies,

- Heavy and light ions
- Heavy on light on ions
- Polarized protons (with up to 65 % beam polarization)

Heavy ion luminosity exceeded enhanced luminosity goal

Successful test of Au collisions at very low energy (~ ½ normal injection energy)

Successful operation of longitudinal stochastic cooling

Future runs and upgrades:

- High luminosity d-Au run
- Factor 3 increase in proton luminosity with 70 % polarization
- High luminosity 250 x 250 GeV polarized proton run
- Uranium beams from EBIS
- RHIC II luminosity upgrade ($\sim \times 10 \ [\sim 70 \times 10^{26} \ cm^{-2} \ s^{-1}]$)

